- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Qiang, Zhe (2)
-
Bounds, Ethan (1)
-
Dunn, Carmen B (1)
-
Dunn, Carmen B. (1)
-
Griffin, Anthony (1)
-
Güillen Obando, Alejandro (1)
-
Hu, Jiayue (1)
-
Liu, Ling (1)
-
Robertson, Mark (1)
-
Smith, Paul (1)
-
Valdez, Sara (1)
-
Ye, Changhuai (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Single‐molecule fluorescence (smFL) imaging techniques have evolved greatly over the past two decades to encompass the ability to monitor chemical reactions, providing unique advantages of non‐invasive sample preparation and characterization, labeling specificity, and high spatial and temporal resolutions. This work summarizes the recent progress in this important area by first providing a brief overview of different smFL techniques, including their common optical setups and working principles. We then introduce recent developments of smFL to characterize various model chemical reaction systems, such as biochemical synthesis, catalyzed systems, and nanomaterial assembly. Furthermore, several representative areas of using smFL to understand polymer reactions are discussed, including understanding interfacial phenomenon and polymerization kinetics, as well as characterizing electrochemical reactions. We also highlight the outlook of this exciting field and potential opportunities for further development and application of smFL to enable advances in polymer chemistry and physics.more » « less
-
Smith, Paul; Hu, Jiayue; Griffin, Anthony; Robertson, Mark; Güillen Obando, Alejandro; Bounds, Ethan; Dunn, Carmen B.; Ye, Changhuai; Liu, Ling; Qiang, Zhe (, Nature Communications)Abstract Despite groundbreaking advances in the additive manufacturing of polymers, metals, and ceramics, scaled and accurate production of structured carbons remains largely underdeveloped. This work reports a simple method to produce complex carbon materials with very low dimensional shrinkage from printed to carbonized state (less than 4%), using commercially available polypropylene precursors and a fused filament fabrication-based process. The control of macrostructural retention is enabled by the inclusion of fiber fillers regardless of the crosslinking degree of the polypropylene matrix, providing a significant advantage to directly control the density, porosity, and mechanical properties of 3D printed carbons. Using the same printed plastic precursors, different mechanical responses of derived carbons can be obtained, notably from stiff to highly compressible. This report harnesses the power of additive manufacturing for producing carbons with accurately controlled structure and properties, while enabling great opportunities for various applications.more » « less
An official website of the United States government
